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W A L L  B O U N D A R Y  L A Y E R  I N  A S T R A T I F I E D  

M E D I U M  

K. E. Dzhaugashtin* and A. Zh. Naimanova UDC 532.558.21 

An algebraic model of turbulence in a stratified medium is constructed using equations of  second-order 

moments within the framework of a two-layer scheme. 

In a turbulent flow of a stratified liquid in real situations, along with purely hydrodynamic forces 
Archimedean forces act. Here one of the basic problems is closing of the boundary-la.yer equations. 

Prandtl established regularities in the distribution of various charactersitics of the flow as applied to a 

neutral-stratified medium. According to his "two-layer scheme" the entire boundary layer is subdivided into two 
sublayers, namely, a laminar sublayer adjacent to the underlying surface and a turbulent core of the flow. In the 

first sublayer, molecular transfer plays a major part, while in the second, turbulent transfer prevails. Further 

experimental investigations have revealed an additional intermediate layer between the sublayers mentioned in 
which a complicated nonlinear interaction of molecular and molar transfer modes exists. Subsequent theoretical 

studies have been aimed at creation of a semiemperical theory that provides a continuous velocity distribution within 
the framework of a unified one-layer model or a two-layer scheme that leads to a smooth change in the velocity 
from linear (in the laminar sublayer) to logarithmic (in the turbulent core of the flow). 

Below, a semiempirical theory of the boundary layer in a stratified medium is presented that is based on 
balance equations of pulsation energy within the framework of a two-layer scheme and that contains a minimum 
number of virtually universal empirical constants. We note that thin problem in such a formulation has not been 

considered previously in the literature. 
We will investigate the boundary layer on a smooth infinite flat horizontal surface around which a uniform 

flow of an incompressible liquid passes under arbitrary vertical thermal stratification conditions. 

The equations of motion and heat and the boundary conditions in the case under consideration are 

dU 2 dT  qw 
+ ( -  uw) = u .  , + ( -  tw) - 

pCp ' 

dU Zw dT  qw 
at z = 0 ,  v d---z- p ' a - ~ z = p c p  

(0 

To close the system of equations (1), we use relations for one-point second-order moments and the velocity 

and temperature fields that take into account Archimedean forces [1 ]: 

* Deceased. 
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Equations (1) and (2) are written in generally accepted notation under the assumption of equality of the 
kinematic viscosity and the thermal diffusivity. To close (2), semiempirical relations of A. N. Kolmogorov and J. 
Rotta [2-4 ] are used: 

~/2 
2v ~o__~ ou,~ = c:. ~ + ~. c , 

~ax k oxk!  : 1 

m , �9 = r  , 
Oxkl (3) 

I ,,-e 
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(P('~x/)> ~ 1 ( 2)) Ot = - k t----[-(uit ) ,  E =  ~ (u 2)+(v 2)+(w . 

Here l is a quantity having the dimension of length; k, c (with various subscripts) are empirical constants determined 
below from experiments on turbulent flows in a homogeneous medium. It is assumed that the influence of 
stratification on their values is insignificant. 

As experiments show, for turbulent flows of the type considered the diffusion terms in Eq. (2) can be 
neglected [4 ]. If we adopt this approximation, substitute (3) into (2), and write equations for purely shear flow (u 
= U(z), w - v - O, T - T(z)), we obtain a system of equations that in expanded form is 
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Thus, we have a system of algebraic equations relative to one-point second-order moments ((uiuj), (tui), 
(?)). 

Note that the equations contain quantities proportional to the physical viscosity v that are absent in all 

other models of turbulent flow in a stratified medium. Precisely the presence of these terms makes it possible to 

include in calculation a buffer zone between the laminar sublayer and the turbulent core of the flow, as will be 
done below, within the framework of the two-layer scheme. 

We now evaluate the empirical constants [5-7 ]. If we solve the equations for a developed turbulent flow in 

a homogeneous medium [5, 6 ], we will obtain the following expressions for turbulent transfer of momentum and 

heat and the anisotropy coefficient: 

- (uw) = - 1 - ~  l , ( t w ) = - - / 2  , 
k a dz  dz  

( u ~  _ k / c  + 2 (5) 
<we> k/~- 1 

Since l is determined by the adopted hypotheses with an accuracy up to a constant multiplier, the numerical 

coefficient in the expression for - ( u w )  can be assumed to be equal to unity: 

(:(: �9 

Hence it follows that k and c are determined by the single constant k / c ,  whose value'is found from experimental 

data on the finite degeneracy of the turbulence behind a grid [41. They show that (u2 ) / (w  2) = 1.5. Next from (5) 

it follows that 

k / c  = 7.  (6) 
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TABLE I. Pulsat ion Characterist ics in Parametr ic  Relation to RL, RE, G r  

F Fi ~Pi i 
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T hen  k and c are  

The  ratio k / c  in (6) satisfactorily describes experiments  on a flow of a homogeneous  medium in a channel  

[6 ] and a flow in a wake behind a body and stratified jet flows [7 ]. Th e  expression for the turbulent  Prandt l  

number  at - k /k t  determined in [8 ] from experimental  data in a homogeneous medium gives t7 t _- 0.75. 

The  o ther  coefficients are  de termined  from the theory  of degeneracy of the dynamic  and scalar  fields of 

isotropic turbulence [4 ] and are  approximately  

5 3 v r  
c t / c - -  1, c l = ~ ,  C l t = ~ - ~ a  , c . t = ~ a  , a = - -  a 

The  constants Cl and Cut will next  be corrected in accordance with exper imental  da ta  on the velocity and  

temperature  distr ibution in a homogeneous medium since in real flows on a flat surface the turbulence s t ructure  

has an  anisotropic nature.  

For  convenience in solving Eqs. (4) we introduce the following notation: 

m = kRp. + c I , q = cR E + c I , 2 = 2 (k - c) R E , p = ctR E + Clt , n = k t R E + cut, 

= ~ z  RE l - - ~ ,  R i = f l g ~  dT ' = - d ' z z / ~ d z )  ' G r =  
(7) 

where RL is the local Reynolds  number  characterizing energy generation;  RE is the turbulent  Reynolds  number  

determined by  the value of the per turbat ion energy. 

Now we rewrite (4) with account for notation (7): 

L E + q - P g v  E = 0 ,  m - - ; t - 2 f l g v  E = 0 ,  
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rn W~E - : t = 0 ,  m ( u w ) + R L ( W S - - f l g ~ - ~ ( t u ) = O ,  

n (tu) + RL  ~f~- ~--- OT (uw) = O n (tw) + ~ z  (WS - f lg ( t S  = O E v Oz ' (8) 

p (t2) + - - - ~ z  (tw) = O , (v2)=(w2) ,  (uw) = (vw) = O , 

E = ((u 2) + (v 2) + (w2))/2.  

The solution of (8) is given in Table 1, where the sought expressions for the one-point second-order moments are 
presented in the form of two cofactors F ..  F~P i, i = 1, 7, where Oi takes account of the influence of stratification 
of the medium. 

Thus, the obtained expressions for the one-point second-order moments make it possible to close the system 
of equations (1) and calculate, correspondingly, the velocity and temperature fields. 

Passing, as usual, to the universal variables 

zu, U T 1 qw (9) 
rl - v ' 7"= u .  0 T .  ' T ,  = x u .  pcp 

we write (1) in the form 

1 dO o (10) 
d,1 = 1 + r (RE) '  d,1 - 1 + �9 5 (RE)" 

Within the framework of the two-layer scheme, in the laminar sublayer Archimedean forces do not exert 
an influence on the regularities of the velocity and temperature distributions. Therefore the equations of motion 
and heat can be written as 

d_E._ 1 dO 
d ' l  - ' a , 1  - ~ ' 

On a smooth plate at r / -  0 the velocity and the temperature are equal to zero: 7" = 0, 0 = 0. Thus, the 
distributions of the sought quantities are linear [9 ]: 7' = ~7, 0 ffi or/. 

The stratification of the medium influences the thickness of the laminar sublayer. To determine it, we 

consider a graphical analog of the energy balance equation (which is obtained by summation of the first three 
equations of system (8)): 

2 
7"I = 7"II, 7"I = (A4 + AS Gr)  R L ; 7"II = AI + A2 G r  + A 3 G r  2 , (11) 

where A1 = p q ( m n ) 2 ;  A2 ffi mn (~p  + qm + 3pq); Aa --~.p + qm + 2pq; A 4 ~ n 2 p ;  A 5 = ~ ( n  - p) .  

Equation (11) is the energy balance of disturbing motion, the left-hand side of which is proportional to 
energy generation, and the right-hand side, to dissipation. According to the analysis made in [2 ], at some value 
RL -- RL0 the flow mode changes. At this point relation (11) and the additional relation [2 ] 

d7"I d7"II 

dR E dR E , 
(12) 

s 

must be fulfilled, i.e., (A 4 + A'sGr)R 2 -- A1 + A2Gr + A'3Gr 2, where a prime denotes differentiation of the function 
A i with respect to R E. 

Thus, Eqs. (11), (12) serve to determine the critical values of the local numbers R E and R E. 
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To integrate system (10), it is necessary to find a relationship between the variables r /and  RE. For this, 
we turn to the expression for the local number RL. Taking in it the Prandtl mixing l~ath length l = to / a s  a scale 
and passing to the universal variables, we obtain 

R L = (0cr/) dr/ " 

Replacing RL here by the expression for it obtained from the energy balance equation and substituting for the 
derivative d~o/dr/, we obtain from (10) 

1 
r/ = ~ ~/R L (1 + r ( R E ) )  �9 

(13) 

In the transition region near the wall the viscosity is among the governing parameters, and therefore from 
dimensionality considerations it follows that l u . / v  - f ( r / ) .  Next, the linear dependence l u . / v  - f i r~  is assumed. 
From the matching conditions at the interface of transition region-turbulent  core we have rx = r [6 ]. 

The fight-hand side of expression (12) is a function of RE, i.e., )7 ,,, )/(RE). Therefore we pass to the new 

variable RE in the equations of motion and heat. As mentioned above, values of the local Reynolds  numbers that 
exceed certain critical quantities (denoted by an asterisk) correspond to the turbulent mode of flow:. 

R E > R  E , R L > R  L, R i > R i ' .  

Lower values of RE, RL, and Ri correspond to laminar flow. In this case we" must discard the turbulent 
shear stress of friction ( - (uw)  = 0) and heat transfer (-( tw) = 0) in system (1). Then this system can be written 
in the universal variables in a form corresponding to the laminar sublayer. 

The boundary of the viscous sublayer r/* and the velocity and temperature at this boundary are determined 
from the critical values R~: 

�9 1 q R  g ( 1  + ~ 4  (RE)) , ,o )1" 0* r/ = ~  = , =or /  

In the new variables Eq. (11) is written as 

d~ = dr~ 1 dO _ dq I 
dR E dR E 1 + (I)4 (RE) ' d R E  dR E 1 + ~5 (RE)" 

Integration of it with the initial conditions 

R E = R E ,  ~o=~o*, 0 = 0 "  

yields 

RE 

dR E 
R E 

_ 1 dIRE, 
1 + o4 (Re) 

R E 
o =  f, dr/ a 

dR E 1 + ~5 (RE) dRE;  
R E 

)1 = -xl (AI + A2Gr + AaGr2) 1 / 4 A 4  + A5 (1 + cI~4) 1 / 2  , 

where Gr = Gro(m/)4a/(1 + ~S); Gro =flgvT./u3.. 

RE. 

(14) 

Expressions (14) determine the velocity and temperature profiles in quadratures in parametric relation to 
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Fig. 1. Universal velocity profile for different values of the stratification 

parameter Gro: 1) calculation (C l = 2.3),  2) calculation (cl = 3 .92) ,  3) 
experimental data [101. 
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Fig. 2. Distribution of the turbulent pulsations V'E/u. in the transition region 

near  the  wall for d i f ferent  values of the s t rat i f icat ion parameter :  1) 
calculation, 2) data of [I0]. 

Fig. 3. Profiles of the turbulent friction (curves 1) and the correlation 
coefficient (uw)/((u2Xw2)) l/z= A (curves 2) for di f ferent  values of the  

stratification parameter Gro: a) calculation, b) data of [10 ]. 

In solving Eqs. (14), the boundary of the viscous sublayer was preliminarily determined from (13) using 
the critical values R~, R~., which, in turn, were found from (11) and (12). Then the integrals in (14) determining 

the universal velocity and temperature profiles were calculated. 
The results calculated are given in Figs. 1-3. 

As noted above, the values of the constants cl, cut require correction. For this purpose we will consider the 

universal velocity profile in a homogeneous medium (Gr0 = 0). As seen from Fig. 1, the dashed curve with cl = 
3.92 is above the calculated (solid) curve and the experimental data of Layfer [10 ]. The choice of cl = 2.25 provides 
coincidence of the velocity profiles. The value of Cl is close to the quantity obtained by Levin (ci = 2.4). For 

correction of cut we assume ot = 1. In this case the profile of 0 for Gr 0 -- 0 must coincide with ~o (Cl -- 2.25). The 
best correspondence of them is provided by the choice of cut = 2.617. 

Figure 1 also presents velocity profiles for different values of the stratification parameter Gr 0 (solid curves). 
In Figs. 2, 3 the turbulent friction, the correlation coefficient (llW)/((U 2) (wE)) 1/2, and the turbulent 

pulsations xf-E/u, in the transition region near the wall are compared to the experimental Layfer data of [10 ] for 
neutral stratification. Here, curves calculated for stratification conditions are also given. Stable stratification 

suppresses the turbulent friction, while unstable stratification, on the other hand, increases it. Under unstable 
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stratification conditions the turbulent pulsations V~/u .  are increased, but in the case of stable stratification their 
increase is insignificant. 

N O T A T I O N  

Ri, Richardson number; Gr, local Grashof number; hi/, Kronecker symbol; v, kinematic viscosity; p, 
density; P, pressure fluctuation; x, K~rm~n constant; ~'w, friction stress on the wall; qw, heat flux on the wall; cp, 
heat capacity at constant pressure; at, turbulent Prandtl number; 1, mixing path length; g, gravitational acceleration; 
t, temperature fluctuation; (u, v, w), components of the vector of the pulsation velocity; U, mean longitudinal 
component of the velocity; T, mean temperature;/~, coefficient of thermal expansion; E, kinetic energy of the 
pulsation; u.. .  (~w/p) 112, dynamic velocity; a, thermal diffusivity. 
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